Laboratory and Epidemiology Communications

Outbreak of Food Poisoning Caused by Lunch Boxes Prepared by a Company Contaminated with Multidrug Resistant Salmonella Typhimurium DT104

Masumi Taguchi*, Kazuko Seto, Masashi Kanki, Teizo Tsukamoto, Hidemasa Izumiya† and Haruo Watanabe‡

Osaka Prefectural Institute of Public Health, Osaka 537-0025 and
†National Institute of Infectious Diseases, Tokyo 162-8640

Communicated by Haruo Watanabe

(Accepted January 19, 2005)

*Corresponding author: Mailing address: Osaka Prefectural Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan. Tel: +81-6-6972-1321, Fax: +81-6-6972-0772, E-mail: mstaguch@iph.pref.osaka.jp

Salmonella enterica serovar Typhimurium definitive phage type (DT) 104 was first isolated in the United Kingdom in 1984. It was isolated widely from men and animals in Europe and the United States in the 1990s (1-3). Though it was first isolated in Japan in 1987 (4), prior to 2003 there were relatively few cases of food poisoning by the organism, and no large-scale food poisoning outbreak such as that caused by S. Enteritidis (5). However, in September 2003, a large-scale outbreak of food poisoning by S. Typhimurium broke out in Osaka through the distribution of cooked food.

On September 4, a local public health bureau in Kyoto Prefecture received a report that many employees of an institution were absent due to abdominal pain, diarrhea, and fever. It was found that they had consumed lunch boxes distributed by a cooked food-provider (Company A) in Osaka. On September 9, a medical facility in Osaka Prefecture reported to the local health bureau on food poisoning cases in a kindergarten. The patients exhibited abdominal pain, vomiting, and diarrhea. They also had consumed lunch boxes supplied by the same Company A, which daily distributed 18,681 lunch boxes to 3,081 institutions and 1,100 lunch boxes to 28 kindergartens. The September outbreak affected 144 institutional workers and 214 kindergarteners. The chief symptoms were diarrhea (355 patients, or 99% of the total), abdominal pain (292 patients, 83%) and fever (256 patients, 72%). The distribution of the cases indicated that lunch boxes prepared by Company A on September 1 and 4, respectively, caused the outbreaks in the institutions and kindergartens.

S. Typhimurium was isolated from 77 of the 91 patients from whom stool samples were taken. However, 46 cooked food specimens for institutions prepared in August 27-September 2 and 40 specimens for kindergartens prepared in September 1-5 that were retained according to the Japanese food regulatory rule were negative for the organisms. Ten swab specimens from the facilities of Company A were also negative. The responsible food material could not be identified by analysis of the consumption pattern. Investigation of the food processing facilities indicated that the cause of the outbreak may have been insufficient sterilization of machines, such as dishwashers or vacuum coolers. The difficulty of detecting the causative bacteria from the food materials in the present case may have been due to the low-level or uneven distribution of the contamination, as suggested by the low incidence of affected individuals, i.e., only 358 patients among nearly 20,000 consumers.

A total of 49 isolates, 8 from the affected institutions (5 isolated by the Osaka Prefectural Institute of Public Health and 3 by the Kyoto Prefectural Institute of Hygienic and Environmental Sciences) and 41 isolates from kindergartens (all isolated by the Osaka City Institute of Public Health and Environmental Sciences), were examined for antimicrobial susceptibility and pulsed-field gel electrophoresis (PFGE) pattern and compared with 4 isolates from 3 outbreaks in Osaka Prefecture in 2003 and 2 isolates from sporadic cases also in Osaka. The drug resistance pattern obtained by using BD Sensi-Disc antimicrobial discs (Becton Dickinson Microbiology Systems, Cockeysville, Md., USA) following the NCCLS guideline of the United States (6) revealed that all the 49 isolates from the present outbreak were resistant to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline (ACSSuT), and one isolate from a sporadic case showed the same drug resistance pattern (Table 1). Eight isolates from the institutions, 5 isolates from kindergartens, 4 isolates from other outbreaks and 2 isolates from sporadic cases were submitted to the PFGE analysis of the total DNA (7). All the isolates from the present outbreak and one isolate from a sporadic case showed the same pattern, i.e., Ba type in BlnI digestion and Xa pattern in XbaI digestion (both restriction enzymes were products of Roche Diagnostics, Mannheim, Germany) (Fig. 1). Other isolates showed dissimilar patterns. Five isolates each from the institutions and kindergartens and one isolate from a sporadic case were used for bacteriophage typing (8). All 10 isolates from the present outbreaks were typed as DT104, but the sporadic isolate was typed as DT104B.

Most S. Typhimurium DT104 isolates implicated in food poisoning in Europe and the United States were resistant to ACSSuT, and the resistance genes were clustered within 13 kb on the chromosome (9). The isolates from the present outbreak also showed the same drug resistance pattern, although the isolates from other outbreaks in 2003 had a different drug resistance pattern.

One isolate from a sporadic case in 2003 shared the same drug resistance and PFGE patterns with the isolates from the present outbreak. However, this isolate was DT104B, rather than DT104 as in the present case. However, DT104B is considered closely related to DT104; in fact, DT104B isolates have been reported to have the same drug resistance pattern (10) and PFGE pattern (11) as DT104 strains.
Our results suggest that close monitoring of DT104 S. Typhimurium may be necessary.

The present investigation was supported by the grant-in-aid of Ministry of Health, Labour and Welfare for Research on Emerging and Re-emerging infections. The PFGE standard strain Salmonella enterica serovar Braenderup H9812 was obtained from USCDC PulseNet, and the phage typing set from UK HPA (Health Protection Agency).

We thank Prof. H. Yoshikura, Emeritus member of National Institute of Infectious Diseases, for advice on preparing the manuscript.

REFERENCES